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Abstract

The effect of artificial diffusion on discrete shock structures is examined for a family of schemes which includes

scalar diffusion, convective upwind and split pressure (CUSP) schemes, and upwind schemes with characteristic

splitting. The analysis leads to conditions on the diffusive flux such that stationary discrete shocks can contain

a single interior point. The simplest formulation which meets these conditions is a CUSP scheme in which

the coefficients of the pressure differences is fully determined by the coefficient of convective diffusion. It is

also shown how both the characteristic and CUSP schemes can be modified to preserve constant stagnation

enthalpy in steady flow, leading to four variants, the E and H-characteristic schemes, and the E and H-CUSP

schemes. Numerical results are presented which confirm the properties of these schemes.

1 Introduction

The development of computational methods for the solution of gas dynamic equations has presented a contin-

uing challenge. The goal of combining

1. high accuracy

2. high resolution of shock waves and contact discontinuities without oscillation

3. minimum computational complexity

in a single scheme has proved elusive. Two main issues in the design of non-oscillatory high resolution schemes

were identified in the previous paper of this series [5]; first the design of scalar discrete schemes which guarantee

the preservation of positivity and monotonicity in the solution, and second the construction of numerical fluxes

for systems of equations to allow the proper resolution of complex wave interactions which may lead to the

formation of both shock waves and contact discontinuities. The earlier paper develops systematic procedures

for the design of scalar discretization schemes which satisfy positivity constraints. The present paper focuses

on the design of numerical fluxes for the gas dynamic equations.

Results presented in the previous paper confirm that stationary shocks can be resolved with a single interior

point by combining either a symmetric limited positive (SLIP) scheme or an upstream limited positive (USLIP)

scheme with a characteristic decomposition of the diffusive flux. The present paper presents an analysis of

the conditions under which a discrete stationary shock can contain a single interior point. It emerges that

a characteristic decomposition is not necessary to meet these conditions. Perfect single point discrete shocks

completely free of oscillations can be produced by simpler flux splittings belonging to the class of convective



upwindandsplitpressure(CUSP)schemes,in whichscalardiffusionisaugmentedby pressuredifferences.It

is actually possible to obtain high resolution with almost no oscillation by introducing the right amount of of

scalar diffusion, though this seems to result in a scheme which is less robust than the CUSP scheme.

Section 2 reviews the shock jump conditions for one-dimensional flow, and their relationship to Roe's lin-

earization [9]. Section 3 reviews alternative splittings for a family of schemes. In all of them the diffusive flux

is defined by a matrix which can be expressed as a polynomial function of the Jacobian matrix. Section 4

examines semi-discrete schemes for the one-dimensional gas dynamic equations, and analyzes the conditions

under which the numerical fluxes can be in perfect equilibrium when the discrete shock structure contains one

interior point. These constraints can be satisfied by any numerical flux such that the equilibrium across the

interface at the exit of the shock corresponds to the Hugoniot equation for a moving shock, while equilibrium

across the interface at the entrance to the shock is maintained by full upwinding. The Roe linearization can

be used to construct a variety of fluxes with these properties, with or without characteristic decomposition. In

steady-state calculations the total enthalpy should be constant. Unfortunately numerical fluxes derived from

the standard characteristic decomposition are not compatible with this property. Section 5 shows how the

splittings can be modified so that this property is recovered while the discrete shock structure still has a single

interior point. Section 6 discusses the implementation of limiters for these schemes. Numerical results which

confirm the properties of the schemes are presented in section 7.

2 Shock Jump Conditions and Roe Linearization

The general one dimensional conservation law for a system of equations can be expressed as

Ow 0 fw( )=o. (1)

For the equations of gas dynamics the state and the flux vectors are

w = pu , f : pu 2 + p ,

p E pull

where p is the density, u is the velocity, E is the total energy, p is the pressure, and H is the stagnation

enthalpy. If 7 is the ratio of specific heats and c is the speed of sound then
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In a steady flow H is constant. This remains true for the discrete scheme only if the numerical diffusion is

constructed so that it is compatible with this condition.

When the flow is smooth it can he represented by the quasi-linear form

0w 0w

+ A(w)--_-_x = O,

where A(w) = 0°-/-d,and the eigenvalues u, u + c and u- c of the Jacobian matrix A are the wave speeds for the

three characteristics. In smooth flow the entropy S is constant along streamlines, and in isentropic flow the

Riemann invariants R + = u :t: _ are constant along the characteristics d__ -aT = u + c. These conditions may

be expressed by the three equations,
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Taking the dependent variables as
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the equations can be expressed in the symmetric form

where

+ A(w).-:_-- = O,

u c O)
A(_)= c u o .
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Depending on the initial data, there may not be a smooth solution of the conservation law (1). Nonlinear

wave interactions along converging characteristics may lead to the formation and propagation of shock waves,

while contact discontinuities may also appear. Denote the left and right states across a shock by subscripts L

and R, and let if] and [w] be the jumps fn - fL and wn - WL. The shock jump condition is then

[f]----S [w],

where S is the shock speed.

In order to simplify the analysis of the equations when there are finite jumps in w and f, Roe introduced

the linearization

In - YL= mRL(Wn,WL)(Wn-- _"L).

where AnL(Wn, WL) is a Jacobian matrix calculated from the left and right states in such a way that this

relation is exact [9]. He showed that one way to do this is to introduce weighted averages

v:fi-nun + X/'-_UL H = v:-_Hn + v_HLu = (2)
v_+v_ ' v_+v_

into all the formulas in the standard expression for the Jacobian matrix A(w). In the case of a shock wave it

now follows that

AnL(wn - wL) = S(wn - wL).

Thus the shock speed S is an eigenvalue of ARL, and the jump wn - wL is an eigenvector. In the case of a

stationary shock S = 0. If we consider flow with u > 0 only the eigenvalue u - c can be zero. It follows that

when u and c are calculated with Roe averages, u = c for a stationary shock.

3 Alternative Splittings

Suppose that the conservation law (1) is approximated over the interval (0, L) on a mesh with an interval Ax

by the semi-discrete scheme
dwj

_Xx-g_- + hi+ _ - hi_ ½ = O, (3)

where w i denotes the value of the discrete solution in cell j, and hi+ ½ is the numerical flux between cells j

and j + 1. Let fj denote the flux vector f(w i) evaluated for the state wi. Suppose also that the numerical

flux is
1

hi+ _ = -_(fi+l + fj) - di+ ½, (4)



wheredj+½ is a diffusive flux which is introduced to enable the scheme to resolve discontinuities without

producing oscillations in the discrete solution. The diffusive flux is assumed to have the form

1
dr+½= _st+½Bt+½(wt+, - wj),

where the matrix Bj+½ determines the properties of the scheme, and the scaling factor st+ ½ is included for

convenience. Introducing a Roe linearization, let Aj+½(wj+, , wj) be an estimate of the Jacobian matrix

with the property that

Aj+½(wJ+I - wt) = ft+' - ft" (5)

At+ ½ can be decomposed as

At+ ½ = TAT-',

where the columns of T are the eigenvectors of At+½, and A is a diagonal matrix containing its eigenvalues.

Then the upwind scheme is produced by setting

Bt+ ½ =]At+ ½ =T]AIT -1, (6)

where the notation At+ ½ is used to represent the absolute value of At+ ½ which is defined to be the matrix

obtained by replacing the eigenvalues by their absolute values. Scalar diffusion is produced by setting

Bi+½= 1. (7)

An intermediate class of schemes can he formulated by defining the first order diffusive flux as a combination

of differences of the state and flux vectors

at+½= st+½ (_t+, - _) + Z_+½(L+, - L).

Schemes of this class are fully upwind in supersonic flow if one takes aj+_ = 0 and/_j+½ = sign(M) when the

absolute value of the Mach number M exceeds 1. The flux vector f can be decomposed as

where

Then

f = uw -b fp, (8)

(0)fp= P •

up

(9)

fJ+' - h = fi(wt+' - wt) + '_(ut+l - ut) + fp,+, - fp,, (10)

where fi and ,_ are the arithmetic averages

1 1
= _ (_t+,+ _), _ = _ (_+,+ _)-

All these schemes can be obtained by representing Bt+ _ as a polynomial in the matrix Aj+½ defined by

equation (5). According to the Cayley-Hamilton theorem, a matrix satisfies its own characteristic equation.

Therefore the third and higher powers of A can be eliminated, and there is no loss of generality in limiting

Bj+½ to a polynomial of degree 2,

Bj+½ = sol+ a,Aj+½ + s2A_+½. (11)

The characteristic upwind scheme for which Bt+ ½ = At+½[ is obtained by substituting At+ ½ = TAT -1,

A_.+½ = TA2T -'. Then s0, a,, and s2 are determined from the three equations

a0+_lA_+_A_ =[Ak[, k= 1,2,3.

The same representation remains valid for three-dimensional flow because Aj+½ still has only three distinct

eigenvalues u, u + c, u - c.

Since wj+, - wj approximates Az-_,, the diffusive flux introduces an error proportional to the mesh width,

and both these schemes will be first order accurate unless compensating anti-diffusive terms are introduced.
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Figure 1: Shock structure for single interior point.

4 Conditions for a Stationary Shock

The model of a discrete shock which will be examined is illustrated in figure (1). Suppose that W L and wR

are left and right states which satisfy the jump conditions for a stationary shock, and that the corresponding

fluxes are fL = f(WL) and fn = f(wR). Since the shock is stationary fL = fR. The ideal discrete shock has

constant states WL to the left and wa to the right, and a single point with an intermediate value wA. The

intermediate value is needed to allow the discrete solution to correspond to a true solution in which the shock

wave does not coincide with an interface between two mesh cells. According to equation (1)

where fLB and fRB are the fluxes at the left and right boundaries. Assuming that the boundary conditions

are compatible with a steady solution containing a stationary shock, the location xs of the shock is fixed by

this equation, since

0L w(T)dz = ZsWL "t" (L - x,)wR.

Similarly in the semi-discrete system

___wj(T) = _,wj(O) + (fRB - fLB)dt. (12)
.i J

Thus __,j wj(T) has a value which is determined by the initial and boundary conditions, and in general it is

not possible for this value to be attained by a discrete solution without an intermediate point, because then

the sum would be quantized, increasing by wR -- WL whenever the shock location is shifted one cell to the

right.

Three diffusion models of varying complexity are examined in the following paragraphs to determine their

ability to support the ideal shock structure containing a single interior point. These correspond to one, two

or three terms in equation (ll).

4.1 Case 1 Scalar Diffusion

The first model is simple scalar diffusion with

1

dj+½ = _c_j+½(wJ+l - wj).

Consider the equilibrium in the cell immediately to the right of the shock. Using subscripts AR and RR to

denote the values at the cell boundaries, the outgoing flux is

1 lhnn = (fn + In) - _nn(wR - wR)= In,



while the incoming flux is
1 1

For equilibrium these must be equal. It follows that

fR - fa + C,A_(WR-- W.) = O.

This is the Hugoniot condition for a shock moving to the left with a speed aan. Introduce a Roe linearization

with a mean Jacobian matrix Aan(wa, wn) such that

fR - fa = Aan(wn - wa).

Then wn - WA is an eigenvector of AAR corresponding to the eigenvalue --ctan. The eigenvalues of AAR are

u, u + c and u - c. If we consider flow to the right with u > 0, and u < c, a solution with positive numerical

diffusion is obtained by taking air = [u -- cl. Then the intermediate value wa must lie on a Hugoniot curve

defined by the right state wn.

When the corresponding equilibrium is considered for a cell immediately to the left of a shock wave in a

flow moving to the left, it is found that the diffusion coefficient should be lu + c I. Both cases can be satisfied

by taking c_ = min(lu + cl, Iu - cl). In the neighborhood of a stagnation point the accuracy can be improved

by taking a proportional to u to prevent the numerical diffusion becoming undesirably large. This suggests

the strategy of using a diffusion coefficient proportional to the smallest eigenvalue, or

%+½ = minlAkl
k

where Ak are the eigenvalues u, u + c, and u - c of Aj+½. To prevent the scheme from admitting stationary

expansion shocks which would violate the entropy condition, the diffusion coefficient may be redefined as

= m.in A_, (13)
£

where

A I iflAkl >( (14)

and _ is a positive threshold proportional to e. Recent work of Aiso [1] has established that in the scalar case

this modification of the viscosity is sufficient to guarantee that the discrete solution will satisfy the entropy

condition. The usual strategy in schemes using scalar diffusion has been to make the diffusion coefficient

proportional to the maximum eigenvalue of the Jacobian matrix o°-/_,in order to make sure that the numerical

viscosity for each characteristic variable is large enough to satisfy the positivity condition. Numerical tests with

the alternative strategy of using the smallest eigenvalue confirm that very sharp discrete shocks are obtained,

and that the scheme is robust with a viscosity threshold of the type defined by equation (14).

To determine whether scalar diffusion can exactly support an ideal discrete shock it is also necessary to

examine the equilibrium in the cell immediately before the shock. In this case the numerical fluxes are

hLL "- fL,

and

1hLA : (fA "Jr fL) -- -_OILA(WA -- tOL).

For equilibrium it is necessary that

fA -- fL -- OtLa(tOa -- tDL ) : O,

which is the Hugoniot condition for a shock moving to the right with a speed OLLA. Introducing the Roe

linearization, wA -- WL must now be an eigenvector of ALA. The transition from L to A, however, is less than



thefull jumpfor astationaryshockforwhichit is knownthat Roeaveragingresultsin u = c. Thus it may

be expected that u > c, and the choice c_La = u -- c = [u -- c I could still allow the equilibrium condition to be

satisfied. Then WA lies on a Hugoniot curve defined by the left state WL.

The question now arises whether an intermediate state WA can be found that simultaneously lies on Hugoniot

curves defined by the left and right states WL and wit, where these two states themselves satisfy the Hugoniot

I be the specific volume. Then allcondition for a steady shock. It turns out that this is not possible. Let v = 7

possible shocks connecting WL and wit must satisfy the Hugoniot relation

7-1
pitvit - pLVL = _(pit + pL)(VL -- Vit). (15)

This establishes a locus on a p - v diagram of a family of shocks as the shock speed is varied. The single point

shock structure requires WA to lie on the Hugoniot curves defined by WL and wit. The curve defined from WL

is

7 -- 1 (Pa + pL)(VL -- VA), (16)
PA VA -- PL VL -- 2

while the curve from wit is

7 - 1 (pit + pA)(VA -- vit). (17)
pitvit - pAVA -- 2

These intersect only when WA = wit or WL. To prove this note that (15) can be written as

pitvit -- pLVL = oL(pitVL -- pLVR),

where _ = 2:A Similarly (16) and (17) yield
-r+l "

PA = PL
VL -- OLVA VR -- O_VA

--pit
V A -- OlV L V A -- O_Vit

Thus va satisfies a quadratic equation which may be written as

(pitoit - pLoL)vA -- -(pit -- PL)(v_ + vLvit) + _%A(pitv_ -- pLvit) = 0.

Substituting from equation (18)

VA(pitVL -- pLVIt) -- (pit -- pL )(V2A "+ VLVIt) + VA(pitvit -- pLVL ) = O,

(18)

or

(pit - pL)(v.a -- VR)(VA -- VL) = O.

If PL 5/=Pit this has only the solutions va = VL or VA = vit. Therefore it is concluded that scalar diffusion

cannot support a perfect discrete shock with a single interior point. Calculations of one-dimensional flows

reveal an oscillation of very small amplitude upstream of the shock. In multidimensional flows, however, these

oscillations are essentially imperceptible.

4.2 Case 2 Characteristic Upwind Scheme

The second case to be examined is the upwind scheme which results from characteristic decomposition, with
I

]. This case has been studied by Roe [10], and it is known that the upwind scheme admits idealB_+_ At+½

shocks. Assuming flow to the right with u > 0, the fluxes in the cell to the right of the shock are now
!

hitR = IR,

and

yielding equilibrium if

1 }AAItl(wit -- WA),h,_it = (fit + Ya ) -- -_

(AAR -- IAAitl)(wit -- WA) = T(A - IAI)T-'(wit - wA) = O.



Withu < c this is satisfied by the negative eigenvalue u-c, and since wn-Wa is the corresponding eigenvector,

the Hugoniot equation

is satisfied for the shock speed S : u - c. Thus wA again lies on a Hugoniot curve. At the entrance to the

shock the transition from WL to WA is less than the full transition from WL to WR for which u = c. Thus

a structure is admitted in which u > c in the transition from L to A, with the consequence that the flux is

calculated from the upwind state

fLA = (fA + fL)--_ALA(WL--WA) = fL

and equilibrium is maintained.

4.3 Case 3 Convective Upwind and Split Pressure (CUSP) Scheme

Characteristic decomposition allows equilibrium to be established through full upwinding of the flux entering

the transition layer, while the flux leaving the transition layer satisfies a Hugoniot equation. This can also be

accomplished by a less complex scheme. Suppose that the diffusive flux is defined as

1 ,
dj+½ : -_ol e(wj+ 1 - wj) + j3(fj+, - fj),

where the factor c is included so that a* is dimensionless. Let M be the Mach number _. If the flow is

supersonic an upwind scheme is obtained by setting

_* = O, /3 = sign(M).

Introducing the Roe linearization, the Mach number is calculated from u and c, and at the entrance to the

shock a transition to an intermediate value WA is admitted with u > c and

fLA : l (fA + fL)-- l (fA -- fL) = fL .

The fluxes leaving and entering the cell immediately to the right of the shock are now

fRR = fR,

1 1

_'c(wR - WA)-- 2#(fR -- fA).fAR = ½(fR + /A) --

These are in equilibrium if
o_*e

fR - fA + 1-_(,_R - _A) = 0.

This is the Hugoniot equation for a shock moving to the left with a speed ]%-_.a'cAlso, introducing the Roe

linearization,
O_*C

(ARA + "-(--ff-_I)(wR -- wa) = O.

Thus wn - wa is an eigenvector of ARA and a'_- 1+-'_ is the corresponding eigenvalue. Since the eigenvalues are

u, u + c and u- c, the only choice which leads to positive diffusion when u > 0 is u- c, yielding the relationship

_'_= (I+ _)(c - u), 0 < u < c.

Thus/3 is uniquely determined once a* is chosen, leading to a one-parameter family of schemes. The choice

/3 = M corresponds to the Harten-Lax-Van Leer (HLL) scheme [4, 3], which is extremely diffusive.

The term B(fR -fa) contributes to the diffusion of the convective terms. Suppose that the convective terms

are separated by splitting the flux according to equations (8), (9) and (10). Then the total effective coefficient

of convective diffusion is

ac = a*c + Bfi.

and



Thechoiceo_c = u leads to low diffusion near a stagnation point, and also leads to a smooth continuation

of convective diffusion across the sonic line since c_* = 0 and /3 = 1 when ]M I > I. The scheme must also

be formulated so that the cases of u > 0 and u < 0 are treated symmetrically. Using the notation M - _

A+ = u + c, this leads to the diffusion coefficients

= IMI (t9)

(n

+maxkv, u___ ] if O<M<I

/3= -max\ ,u-x+) if -I<M<O

sign(M) if IMI >_ 1.

Near astagnationpoint _ may be modified to c_= ½ (e+ MI_2) if IMl is smaller than a threshold e.

(20)

4.3.1 Criteria for a single point shock

The analysis of these three cases shows that a discrete shock structure with a single interior point is supported

by artificial diffusion that satisfies the two conditions that

1. it produces an upwind flux if the flow is determined to be supersonic through the interface

2. it satisfies a generalized eigenvalue problem for the exit from the shock of the form

(AAR -- OtARBAR) (WR -- WA) = 0,

where AAR is the linearized Jacobian matrix and BAR is the matrix defining the diffusion for the interface

AR. These two conditions are satisfied by both the characteristic and CUSP schemes. Scalar diffusion does

not satisfy the first condition.

5 Schemes Admitting Constant Total Enthalpy in Steady Flow

In steady flow the stagnation enthalpy H is constant, corresponding to the fact that the energy and mass

equations are consistent when the constant factor H is removed from the energy equation. Discrete and semi-

discrete schemes do not necessarily satisfy this property. In the case of a semi-discrete scheme expressed in

viscosity form, equations (3) and (4), a solution with constant H is admitted if the viscosity for the energy

equation reduces to the viscosity for the continuity equation with p replaced by pH. When the standard

characteristic decomposition (6) is used, the viscous fluxes for p and pH which result from composition of the

fluxes for the characteristic variables do not have this property, and H is not constant in the discrete solution.

In practice there is an excursion of H in the discrete shock structure which represents a local heat source. In

very high speed flows the corresponding error in the temperature may lead to a wrong prediction of associated

effects such as chemical reactions.

The source of the error in the stagnation enthalpy is the discrepancy between the convective terms

U pu ,

pH

in the flux vector, which contain pH, and the state vector which contains pE. This may be remedied by

introducing a modified state vector

Wh = pU .

pH



Then one introduces the linearization

fn - fz = Ah(wh,, -- WhL).

Here Ah may be calculated in the same way as the standard Roe linearization. On introducing the vector

V _ v_U ,

_H

all quantities in both f and wh are products of the form vjvk which have the property that a finite difference

A(vjvk) between left and right states can be expressed as

A(v¢vk) = _ Avk + gkAv¢

1
where 6j is the arithmetic mean "_(vjn + vjz). Therefore,

Aw= BAv, Af =CAv=CB-1Aw,

where B and C can be expressed in terms of appropriate mean values of the quantities vj.

Define

u = v'_uR + vf_UL H = vf_HR + v_HL
C_+vrfi ' vr_+Cfi '

and

i U2c = (_ - 1)(H - T).

Then

(oAh= 7
-uH

The eigenvalues of Ah are u, A+ and A- where

1o)2"!Lu7 2_ .

H u

A±_7+lu /(7+1 2
+V- Vu) +--

C2 -- U2

(21)

Note that A+ and A- have the same sign as u + c and u - c, and change sign at the sonic line u = 9:c. The

corresponding eigenvectors of Ah are the columns of

T_

1 1 1 )
u A+ A- .
_2

"5- H H

Also the left eigenvectors of Ah are the rows of

1 ( (A+ - A-)H 0 (A+ - A-)

T-' --_ _ -(uH - A- Y-_) H - u_! -(A- - u)

where

Then

U 2

D = (A+ - A-)(H - -£--) = (A+ - A-)
7-1"

Ah = TAT -1,

10



where

A = A+ .

A-

The same development can be carried out for multidimensional flows. For convenience the formulas for the

general multi-dimensional case are presented in the Appendix.

Using the modified linearization both the characteristic upwind scheme and the CUSP scheme can be

reformulated as follows to admit steady solutions with constant H.

5.1 Case 1 Characteristic Upwind Scheme

The diffusion for the characteristic upwind scheme is now defined to be

1 Ah,+_dj+½ = -_ (wj+l - wj),

in which IAhJ is defined to be

[Ahl = TAT -1,

where T is the eigenvector matrix of Ah, and

lul )
IAI= IA÷[ •

IA-I

In order to show that the scheme admits a solution with constant H, split the diffusion into two parts

dO) d (2)
dj+½ = _j+½ + j+½

where d_l+)½ is the contribution from lul, and where d_2+_½is the contribution from IX+ land IA-I. Then

(11l)(0 )d! 2) u A+ A- IA+{ T-1AWh
3+3 = u_

-y H H IA-I

o IA+I IA-I )
= 0 IA+IA + IA-IA - T-1Awh,

0 I_+lH I_-IH

and the third element of _(2) equals the first element multiplied by H. Also
_j+½

d(1) (7 - 1)lul ,, _÷ A- 0
_j+½ - c 2 ,p

7 H H 0

(7 - 1)plulAH ( 1 '_

)C 2 u2

T

and this is zero if H is constant. Thus both contributions are consistent with a steady solution in which H

is constant. The two variations of the characteristic splitting can conveniently be distinguished as the E and

H-characteristic schemes.

11



5.2 Case 2 CUSP Scheme

The diffusive flux is now expressed as

d_+__= _ eAwh +

where A denotes the difference from j + 1 to j. Again equilibrium at the entrance is established by upwinding,

while equilibrium at the exit requires

ot*e *

I)AwhO_c+ TT-- awh : (A. + = o

Therefore, a" c-]T_ must be an eigenvalue of Ah, and in the case u > O, positive diffusion is obtained by taking

c_'c = -(1 + fl)A-.

Now the split is redefined as

where

and the diffusive flux can be expressed as

f = UWh + fp,

(o)fp= p

0

1

dj+ i = -_o,cAwh + Z_hAu + eA/p.

Then a and _ are defined as before by equations (19) and (20), using the modified eigenvalues A± defined

equation (21). This splitting corresponds to the Liou-Steffen splitting [7, 13]. The splitting in which the

convective terms contain pE corresponds to the wave particle splitting [8, 2]. As in the case of characteristic

splitting, the two variations can conveniently be distinguished as the E-CUSP and H-CUSP schemes.

6 Implementation of limiters for the CUSP scheme

In the case of a scalar conservation law, high resolution schemes which guarantee the preservation of the

positivity or monotonicity of the solution can be constructed by limiting the action of higher order or anti-

diffusive terms, which might otherwise cause extrema to grow. Typically, these schemes, such as both the

symmetric and upstream limited positive (SLIP and USLIP) schemes discussed in the previous paper in this

series [5], compare the slope of the solution at nearby mesh intervals. The characteristic upwind scheme

essentially applies the same construction to the characteristic variables, so that the solution is subject to

controls on the formulation or growth of extrema of these variables. The fluxes appearing in the CUSP scheme

have different slopes approaching from either side of the sonic line, and use of limiters which depends on

comparisons of the slopes of these fluxes can lead to a loss of smoothness in the solution at the entrance to

supersonic zones in the flow.

An alternative formulation which avoids this difficulty, and may be used with either the characteristic

upwind or the CUSP scheme, is to form the diffusive flux from left and right states at the cell interface. These

are interpolated or extrapolated from nearby data, subject to limiters to preserve monotonicity, in a similar

manner to the reconstruction of the solution in Van Leer's MUSCL scheme [6]. Let

I u - v qR(u,v)=l- u + v '
(22)

where q is a positive power. Then R(u, v) = 0 when u and v have opposite'sign. Also define

1

i(u, v) = _R(u, v)(u + v). (23)

12



Let w (k) denote the kth element of the state vector w. Now define left and right states for each dependent

variable separately as

where

Then

---- ,/..._W: 1 )
2

= -- Z._W= a ),
2 - J-_

Awj+½ = wj+l - wj.

._..e-_ J+_ I-2

and in the case of a scalar equation the SLIP scheme [5] is recovered by making the diffusive flux proportional

to this difference. To implement the CUSP scheme the pressures PL and pR for the left and right states are

determined from WL and wR. Then the diffusive flux is calculated by substituting WL for wj and wR for wj+l

to give

1 , _(I(wR) f(WL)).dj+½= c( ,R - +

Similarly the characteristic upwind scheme is implemented by calculating Aj+½ from wR and WL. An alter-

native reconstruction is to set

---- /.5,W. !)ZAW. t

w(_ ) w k) R(Aw ,2 J-_ _*_-- ,1.5,W. i )I'AW.-- 3 •

It has been found that essentially similar results are obtained in numerical calculations of steady flows using

the two interpolation formulas.

7 Numerical Results

Extensive numerical tests have been performed with the E and H-characteristic and the E and H-CUSP schemes

to verify their properties. Results for one, two and three-dimensional flows are presented in sections 7.1, 7.2

and 7.3.

7.1 One dimensional shock

In order to verify the discrete structure of stationary shocks with the various schemes, calculations were

performed for a one dimensional problem with initial data containing left and right states compatible with the

Rankine-Hugoniot conditions. An intermediate state consisting of the arithmetic average of the left and right

states was introduced at a single cell in the center of the domain. With this intermediate state the system

is not in equilibrium, and the time dependent equations were solved to find an equilibrium solution with a

stationary shock wave separating the left and right states. Tables 1 through 4 shows the results for a shock

wave at Much 20 for the E-characteristic, H-characteristic, E-CUSP and H-CUSP schemes. In all cases the

SLIP construction was used with the limiter defined by equations (22) and (23), and q = 3. The tables show

the values of p, u, H, p, M and the entropy S = log _ -log (pe._[). All four schemes display a perfect one

point shock structure. The entropy is zero to 4 decimal places upstream of the shock, and is constant to 4

decimal places downstream of the shock. There is a slight excursion of the entropy at the interior point in the

results for the H-characteristic and H-CUSP schemes. Correspondingly there is an excursion in the stagnation

enthalpy at the interior point in the results for the E-characteristic and E-CUSP schemes. It may be noted

that the mass, momentum and energy of the initial data are not compatible with the final equilibrium state.

According to equation (12) the total mass, momentum and energy must remain constant if the outflow flux fR

remains equal to the inflow flux fL. Therefore fR must be allowed to vary according to an appropriate outflow

13



boundaryconditionto allowthetotalmass,momentumandenergyto beadjustedto valuescompatiblewith
equilibrium.

7.2 Airfoil calculations

The results of transonic flow calculations using the H-characteristic and H-CUSP schemes are compared in

figures (2-8). The E-characteristic and E-CUSP schemes produce results which are very similar to the results of

the H-characteristic and H-CUSP schemes, with small deviations in stagnation enthalpy. These are eliminated

by the H-characteristic and H-CUSP schemes. The limiter defined by equations (22) and (23) was again used

with q = 3 in both schemes to define left and right states in the manner described in section 6. The H-CUSP

scheme was simplified by replacing the Roe averages (2) by arithmetic averages, and using A+ = u + c in the

formula (20) for _/. It was also found that the term (vhAu tends to reduce the rate of convergence to a steady

state. Therefore it was attenuated by the factor h°R-PLI where Ps is the pressure at sonic speed, and(Ip_-psl+lPL-psl)
PL and PR are the pressures to the left and right. When the flow crosses the sonic line Ps lies between PL

and PR, and this factor becomes unity. Thus the full scheme is restored at a shock wave. All the calculations

were performed with the five stage modified Runge-Kutta time stepping scheme described in reference [5].

Convergence to a steady state was accelerated by the multigrid also described in reference [5], using W-cycles

in which a single time step is performed on each grid level during the descent towards coarser grids. The total

amount of work in each W-cycle is about the same as two time steps on the fine grid.

Calculations are presented for two well known airfoils, the RAE 2822 and the NACA 0012. The equations

were discretized on meshes with O-topology extending out to a radius of about 100 chords. In each case the

calculations were performed on a sequence of successively finer meshes from 40x8 to 320x64 cells, while the

multigrid cycles on each of these meshes descended to a coarsest mesh of 10x2 cells. Figure 2 shows the inner

parts of the 160x32 meshes for the two airfoils. Figures 3-8 show the final results for each scheme on 320x64

meshes for the RAE 2822 airfoil at Mach .75 and 3 ° angle of attack, and for the NACA 0012 airfoil at Mach .8

and 1.250 angle of attack, and also at Mach .85 and 1° angle of attack. In each case the convergence history is

shown for 100 or 200 cycles, while the pressure distribution is displayed after a sufficient number of cycles for

its convergence. The pressure distribution of the RAE 2822 airfoil converged in only 25 cycles. Convergence

was slower for the NACA 0012 airfoil. In the case of flow at Mach .8 and 1.250 angle of attack, additional

cycles were needed to damp out a wave downstream of the weak shock wave on the lower surface.

As a further check on accuracy the drag coefficient should be zero in subsonic flow, or in shock free transonic

flow. Tables 5 and 6 show the computed drag coefficient with the H-characteristic and H-CUSP schemes on a

sequence of three meshes for three examples. The first two are subsonic flows over the RAE 2822 and NACA

0012 airfoils at Mach .5 and 3° angle of attack. The third is the flow over the shock free Korn airfoil at its

design point of Mach .75 and 0° angle of attack. The computed drag coefficients are slightly lower with the

H-CUSP scheme: in all three cases the drag coefficient is calculated to be zero to four digits on a 160x32 mesh.

7.3 Three-dimensional calculations for a swept wing

As a further test of the performance of the H-CUSP scheme, the flow past the ONERA M6 wing was calculated

on a mesh with C-H topology and 192x32x48 = 294912 cells. Figure 9 shows the result at Mach .84 and 3.06 o

angle of attack. This again verifies the non-oscillatory character of the solution, and the sharp resolution of

shock waves. In this case 50 cycles were sufficient for convergence of the pressure distributions.

8 Conclusion

It was shown in the first paper in this series [5] that the concept of local extremum diminishing (LED)

schemes provides a convenient framework for the formulation of non-oscillatory shock capturing schemes for
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I p u H p M s
1 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

2 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

3 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

4 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

5 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

6 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000
7 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

8 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

9 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

10 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

11 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

12 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

13 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

14 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000
15 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

16 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

17 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

18 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

19 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

20 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

21 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000
22 4.4232 6.9992 268.9099 308.8882 0.7079 37.5269

23 5.9259 3.9930 283.5064 466.5228 0.3803 37.6369

24 5.9260 3.9930 283.5064 466.5228 0.3803 37.6369

25 5.9260 3.9930 283.5064 466.5228 0.3803 37.6369

26 5.9260 3.9930 283.5064 466.5228 0.3803 37.6369

27 5.9260 3.9930 283.5064 466.5228 0.3803 37.6369
28 5.9260 3.9930 283.5064 466.5228 0.3803 37.6369

29 5.9260 3.9930 283.5064 466.5228 0.3803 37.6369

30 5.9260 3.9930 283.5064 466.5228 0.3803 37.6369

31 5.9260 3.9930 283.5064 466.5228 0.3803 37.6369

32 5.9260 3.9930 283.5064 466.5228 0.3803 37.6369
33 5.9260 3.9930 283.5064 466.5228 0.3803 37.6369

34 5.9260 3.9930 283.5064 466.5228 0.3803 37.6369

35 5.9260 3.9930 283.5064 466.5228 0.3803 37.6369

36 5.9260 3.9930 283.5064 466.5228 0.3803 37.6369

37 5.9260 3,9930 283.5064 466.5228 0.3803 37.6369

38 5.9260 3.9930 283.5064 466.5228 0.3803 37.6369

39 5.9260 3.9930 283.5064 466.5228 0.3803 37.6369

40 5.9260 3.9930 283.5064 466.5228 0.3803 37.6369

41 5.9260 3.9930 283.5064 466.5228 0.3803 37.6369

42 5.9260 3.9930 283.5064 466.5228 0.3803 37.6369

Table 1: Shock Wave at Math 20: E-characteristic scheme
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I p u H p M s
1 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

2 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

3 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

4 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000
5 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

6 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

7 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

8 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

9 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

10 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

11 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000
12 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

13 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

14 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

15 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

16 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

17 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

18 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000
19 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

20 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

21 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

22 4.2476 7.1962 283.5073 312.6405 0.7089 40.2710
23 5.9259 3.9930 283.5073 466.5208 0.3803 37.6371

24 5.9260 3.9930 283.5073 466.5208 0.3803 37.6371

25 5.9260 3.9930 283.5073 466.5208 0.3803 37.6371

26 5.9260 3.9930 283.5073 466.5208 0.3803 37.6371

27 5.9260 3.9930 283.5073 466.5208 0.3803 37.6371

28 5.9260 3.9930 283.5073 466.5208 0.3803 37.6371

29 5.9260 3.9930 283.5073 466.5208 0.3803 37.6371

30 5.9260 3.9930 283.5073 466.5208 0.3803 37.6371

31 5.9260 3.9930 283.5074 466.5208 0.3803 37.6371

32 5.9260 3.9930 283.5074 466.5208 0.3803 37.6371
33 5.9260 3.9930 283.5074 466.5208 0.3803 37.6371

34 5.9260 3.9930 283.5074 466.5208 0.3803 37.6371

35 5.9260 3.9930 283.5074 466.5208 0.3803 37.6371

36 5.9260 3.9930 283.5074 466.5208 0.3803 37.6371

37 5.9260 3.9930 283.5073 466.5208 0.3803 37.6371

38 5.9260 3.9930 283.5073 466.5208 0.3803 37.6371

39 5.9260 3.9930 283.5073 466.5208 0.3803 37.6371

40 5.9260 3.9930 283.5073 466.5208 0.3803 37.6371

41 5.9260 3.9930 283.5074 466.5208 0.3803 37.6371
42 5.9260 3.9930 283.5074 466.5208 0.3803 37.6371

Table 2: Shock Wave at Mach 20: H-characteristic scheme
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I p u H p M s
1 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000
2 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

3 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

4 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

5 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

6 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

7 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

8 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

9 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

10 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000
11 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

12 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

13 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

14 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

15 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

16 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000
17 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

18 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

19 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

20 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

21 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000
22 4.4011 7.0503 268.7344 306.6689 0.7138 37.5200

23 5.9259 3.9935 283.4970 466.4894 0.3804 37.6357

24 5.9259 3.9935 283.4970 466.4894 0.3804 37.6357

25 5.9259 3.9935 283.4970 466.4894 0.3804 37.6357

26 5.9259 3.9935 283.4970 466.4894 0.3804 37.6357

27 5.9259 3.9935 283.4970 466.4894 0.3804 37.6357

28 5.9259 3.9935 283.4970 466.4894 0.3804 37.6357

29 5.9259 3.9935 283.4970 466.4894 0.3804 37.6357

30 5.9259 3.9935 283.4970 466.4894 0.3804 37.6357

31 5.9259 3.9935 283.4970 466.4894 0.3804 37.6357
32 5.9259 3.9935 283.4970 466.4894 0.3804 37.6357

33 5.9259 3.9935 283.4970 466.4894 0.3804 37.6357

34 5.9259 3.9935 283.4970 466.4894 0.3804 37.6357

35 5.9259 3.9935 283.4970 466.4894 0.3804 37.6357

36 5.9259 3.9935 283.4970 466.4894 0.3804 37.6357

37 5.9259 3.9935 283.4970 466.4894 0.3804 37.6357
38 5.9259 3.9935 283.4970 466.4894 0.3804 37.6357

39 5.9259 3.9935 283.4970 466.4894 0.3804 37.6357

40 5.9259 3.9935 283.4970 466.4894 0.3804 37.6357

41 5.9259 3.9935 283.4970 466.4894 0.3804 37.6357

42 5.9259 3.9935 283.4970 466.4894 0.3804 37.6357

Table 3: Shock Wave at Math 20: E-CUSP scheme
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I p u H p M s
1 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000
2 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

3 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

4 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

5 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

6 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

7 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

8 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

9 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000
10 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

11 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

12 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

13 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

14 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

15 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

16 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000
17 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

18 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

19 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

20 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

21 1.0000 23.6643 283.5000 1.0000 20.0000 0.0000

22 4.1924 7.3248 283.4960 307.4467 0.7229 40.3353
23 5.9259 3.9935 283.4960 466.4889 0.3804 37.6355

24 5.9259 3.9935 283.4960 466.4889 0.3804 37.6355

25 5.9259 3.9935 283.4960 466.4889 0.3804 37.6355

26 5.9259 3.9935 283.4960 466.4889 0.3804 37.6355

27 5.9259 3.9935 283.4960 466.4889 0.3804 37.6355
28 5.9259 3.9935 283.4960 466.4889 0.3804 37.6355

29 5.9259 3.9935 283.4960 466.4889 0.3804 37.6355

30 5.9259 3.9935 283.4960 466.4889 0.3804 37.6355

31 5.9259 3.9935 283.4960 466.4889 0.3804 37.6355

32 5.9259 3.9935 283.4960 466.4889 0.3804 37.6355

33 5.9259 3.9935 283.4960 466.4889 0.3804 37.6355

34 5.9259 3.9935 283.4960 466.4889 0.3804 37.6355

35 5.9259 3.9935 283.4960 466.4889 0.3804 37.6355
36 5.9259 3.9935 283.4960 466.4889 0.3804 37.6355

37 5.9259 3.9935 283.4960 466.4889 0.3804 37.6355

38 5.9259 3.9935 283.4960 466.4889 0.3804 37.6355

39 5.9259 3.9935 283.4960 466.4889 0.3804 37.6355

40 5.9259 3.9935 283.4961 466.4889 0.3804 37.6355

41 5.9259 3.9935 283.4961 466.4889 0.3804 37.6355

42 5.9259 3.9935 283.4961 466.4889 0.3804 37.6355

Table 4: Shock Wave at Mach 20: H-CUSP scheme

Mesh RAE 2822 NACA 0012 Korn Airfoil

Mach.50a3 o Mach.50a3 o Mach.75a0 °

40x8 .0099 .0089 .0126
80x16 .0024 .0017 .0026

160x32 .0002 .0002 .0001

Table 5: Drag Coefficient on a sequence of meshes: H-characteristic scheme
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Mesh RAE2822 NACA0012 KornAirfoil
Math.50a 30 Mach .50 a 3° Mach .75 a 0°

40x8 .0062 .0047 .0098

80x16 .0013 .0008 .0017

160x32 .0000 .0000 .0000

Table 6: Drag Coefficient on a sequence of meshes: H-CUSP scheme

compressible flow calculations. In the case of scalar conservation laws the LED property can be secured by

corresponding symmetric and upstream limited positive (SLIP and USLIP) schemes.

The different scalar constructions can be combined with alternate numerical fluxes to provide a matrix of

schemes for the gas dynamic equations. The property of supporting stationary discrete shocks with a single

interior point is shared by the characteristic and CUSP schemes. Each of these schemes can be modified to

preserve constant stagnation enthalpy in steady flows, giving four variants, the E and H-characteristic schemes,

and the E and H-CUSP schemes. The CUSP schemes are inexpensive. They introduce a minimum amount of

numerical diffusion as the Math number approaches zero. They are therefore also appropriate for viscous flow

calculations in which it is important not to contaminate the boundary layer.

The theoretical properties of these schemes are verified by numerical calculations of one-dimensional, two-

dimensional and three-dimensional flows. References [11] and [12] evaluate the accuracy and efficiency of some

of these schemes for the calculation of viscous flows.
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Appendix: Eigenvalues and Eigenvectors for Gas Dynamic Equa-

tions

The Euler equations which describe the three-dimensional flow of an inviscid gas can be written as

-_ W dV + (F_dS_ + FydS_ + F_dS_) = O (24)
N

where W is the state vector, F_, F_ and Fz are the flux vectors, and dSx, dSy and dSz are the projections of

the surface element in the z, y and z coordinate directions. Let u, v and w be the velocity components and p,

p, E and H the density, pressure, total energy and total enthalpy. Then

Also,

pu puu + p pvu pwu

W = pv , F_ = puv , Fy = pvv +p , F_ = pwv

pw puw pvw pww + p

p E pull pv H pw H

p=(7-1)p(E-_), H=E+ pp-7 -1+c2 q22

where q is the flow speed, and c is the speed of sound,

q2=u s+v 2+w _, c2= 7P
P

When flow is smooth it can be represented by the quasi-linear differential equation

0W A_ OW 0W A_ 0W
--_--+ -_-x +Ay--_y + _=0

where A_, Ay and A_ are the Jacobian matrices

OF,, ary OF_
m,:=--_, AN= (9-W' A_=-_

Under a change of variables to a new state vector PV, equation (28) is transformed to

-&-+ +

(25)

(26)

(27)

(28)
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where
A. = _IA.M -1, Ay = 2_lftyht -1, A_ = MAiM -1

and

Ivl = OW--"'-z-

OW

The finite volume discretization requires the evaluation of the flux through a face with vector area S,

F = F.S. + FySy + F_S...

The corresponding Jacobian matrix is

A-

Let S be the magnitude of the face area

OF

OW
- S,_A,: + SyAy + S_Az.

and n., n_ and n. be the components of the unit normal

S. Sy &

Also let Q be the flux rate

Q = u& +vS_ +w&.

Then the Jacobian matrix can be decomposed as

A = MAM -1

where

1 0 0 0 0 /

u 1 0 0 0

_/= v 0 1 0 0 , _/-1=

w 0 0 1 0

and

Also the further transformation

1 0 0 0

-u 1 0 0

-v 0 1 0

-w 0 0 1

(7-1)_ -(7- 1)u -(3'-1)v -(7-1)w

Q S. S_ & 0 )

o Q o o &

0 0 Q 0 Sy

0 0 0 Q &

0 &c 2 S_e _ &e 2 Q

= Dp;Ip-1D -1

0

0

0

0

7-1

where

D

p

1 0

0 c

0 0

0 0

0 0

1 0

0 1

0 0

0 0

1 0

0

0

C

0

0

0

0

1

0

0

oo)0 0

0 0 ,

c 0

0 c 2

0 0

0 0 ,

1 0

0 0

D-Ix

p-l_

1 0

0 1
c

0 0

0 0

0 0

(oo
0 1

0 0

0 0

1 0

0 0

0 0

1 0
¢

1

0 7

0 0

0 0

0 0

1 0

0 1

0 0

O)0

0

0

0

0

0

-1
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producesthesymmetricform

Then.4,4, andA can be decomposed as

Q S,_c S_c Szc O)

S_:c Q o o o

Svc 0 Q 0 0

Sz c 0 0 Q 0

o o o o Q

A = [_AR -1 , 4 = RA[_ -1, A = RAR -1

where the diagonal matix A contains the eigenvalues

°/0 Q 0 0 0

A= 0 0 Q 0 0

0 0 0 Q+ cS 0

0 0 0 0 Q- cS

Also the right eigenvectors of A, 4, and A are the columns of

R=DN, /_=p-1N, R=I_tDN

and the left eigenvectors of A, A, and A are the rows of

R-1 = N-ID-1, [_-1 = N-1p, R-1 = N-1D-lff4-1

where

g

I n_ ny nz 1 1 I

0 --nz By nx --Bx

nz 0 --nx By --ny , N -1 =

--ny nx 0 nz --nz

0 0 0 1 1

nx 0 nz --ny --nx

Jny --nz 0 nx --By

nz ny --nx 0 --nz

0 _ -_ _ 12 _ 2
0 _n__ ___ _._ !

2 2 2 2

The decomposition to 4 corresponds to the introduction of primitive variables, scaled by a diagonal matrix,

?2

dV_ = bd_, W = . , b=

W

P

1 0 0 0 0

0 p 0 0 0

0 0 p 0 0

0 0 0 p 0

0 0 0 0 p

The decomposition to A corresponds to the introduction of symmetrizing variables dW, defined in differential

form, scaled by another diagonal matrix

/

diTV= DdW, W= [

I ( oooo)du 0 _ 0 0 0

dv ,D= 00_0 o
dw 0 0 0 _ 0

dp-c2dp 0 0 0 0 -

Multiplying out MIDN, the right eigenvectors of A can be expressed as follows. Set

(1)V 0 _ V _ 't.) 1 ----

W (o) (o) (o)0 -n u nv

nz _ v 2 -_- 0 _ V3 = --n x

--By nx 0

vn z -- Why wn x. -- vn z Uny -- vn x
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Thentheeigenvectorscorrespondingto theeigenvalueQ are

r 1 ---- n:_l)0 --]- Vl, r 2 = TtyV0 --_- v2_ r3 ---- nzVO --[- v3,

Here v0 represents an entropy wave and v12 represent vorticity waves. Also let qn denote the normal velocity

Q/S, and set

V 4 _-- (1)tt

V

W

H

0

nx

V5 ---_ By

nz

qn

Then the last two eigenvectors, corresponding to pressure waves, are

r 4 _ V4+CV5_ r5----- V 4 -- CVs_

The H-characteristic and H-CUSP schemes introduce the modified Jacobian matrix

OF

Ah =-_W h

where Wh is the modified state vector

pu

Wh ---- pv

pw

pH

Using transformations of the same kind as those that were used for the standard Jacobian matrix, this can be

decomposed as

A h = I(/lhA h ff/l h 1

where

/ o000/ 0000)u 1 0 0 0 --u 1 0 0 0

fi)/h= v 0 1 0 0 , j_/_-I = --v 0 1 0 0

w 0 0 1 0 --w 0 0 1 0

and

Here

where

Q s_ s_ sz o)

o Q o o s_

Ah= o o Q o ,%

o o o Q s_

0 _ "r Sy-¥ S_ T

ff/lh = )VIDh, /_h 1 = Dhl/_ -1, mh ---- D;1A

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 7
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TheeigenvaluesofAh, and also those of Ah, since they can be derived from Ah by a similarity transformation,

are Q ,Q ,Q ,A+, and A- where

7 + I Q rI: ' / {'Y + I__ I _---=-- |\2+c2S2-Q _A+

_ 7 + 1Q=t= Q +--
27 7

Thus A+ and A- change sign when Q = -t-cS, and A+ has the same sign as Q + cS, while A- has the same

sign as Q - cS. It is convenient to set

7-1Q _ 1tr - 27 cS' P = + -7

A+ - Q A- - Q _ _(p + a)0_+
- cS - # - o', a - cS

Now Ah can be decomposed as

Ah = [:_hAh f:_h 1

where

Q o o o o)

o Q o o o

Ah = 0 0 Q 0 0

0 0 0 A+ 0

0 0 0 0 A-

Also

Rh = DNh, Rh 1 = NhlD -1

where D is the same diagonal scaling matrix as before, and

nx ny nz 1 1

0 --n z ny otTnx ot-n x JNh = nz 0 --nx o_+ny or-ny

--ny Bx 0 Ot+nz ot-nz

0 0 0 ot+2 a -2

with the inverse

in_ -nz - 27an_n_ -27trnu2 n= - 27trnzn u

Nh 1 = n_ ny -- 27an_nz --n_ -- 27anunz --27o'n_

--O_-- n -- -0 _ x _nu -a- n 1
a+ a+ a+ -1

0 2p.ot- ?Ix 2_ny 2-ff'_ nz 2laa-

The formulas for the standard Jacobian matrix are recovered by setting a + = 1, a- = -1,/_ = ½(a +-a-) = 1,

a = -½(a + + a-) = 0. Correspondingly, Ah can now be represented as

Ah = RhAhR ha

where the right eigenvectors of Ah are the columns of

Rh = 2_hkh -_ l_thDNh

and the left eigenvectors of Ah are the rows of

Rh 1 __-- khl/_h 1 : ghlD-l_/hl

These decompositions of A and Ah express every element in terms of velocities and metric quantities, while

the density is completely eliminated from the formulas.
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2a:RAE-2822Airfoil 2b:NACA-0012Airfoil

Figure2: O-TopologyMeshes,160x32
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3a: Cp after 25 Cycles.
Ct = 1.1227, Ca = 0.0460.
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3b: Convergence.
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Figure 3:RAE-2822 Airfoil at Mach 0.750 and a = 3.00
H-characteristic Scheme.
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4a: Cp after 25 Cycles.
CI = 1.1312, Ca = 0.0469.
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4b: Convergence.
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Figure 4:R,AE-2822 Airfoil at Mach 0.750 and a = 3.00
H-CUSP Scheme.
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5a: Cp after 75 Cycles.
Ci = 0.3620, Cd = 0.0230.

i q i I

Work

5b: Convergence.

_8

Figure 5:NACA-0012 Airfoil at Mach 0.800 and c_ = 1.25 °
H-characteristic Scheme.
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6a: Cp after 35 Cycles.
Ct = 0.3654, Cd = 0.0232.
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6b: Convergence.
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Figure 6:NACA-0012 Airfoil at Mach 0.800 and a = 1.25 °
H-CUSP Scheme.
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7a: Cp after 75 Cycles.
CI = 0.3818, Cd = 0.0580.
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7b: Convergence.
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Figure 7:NACA-0012 Airfoil at Mach 0.850 and a -- 1.0 °
H-characteristic Scheme.
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8a: Cp after 35 Cycles.
Ct = 0.3861, Cd = 0.0582.
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8b: Convergence.

Figure 8:NACA-0012 Airfoil at Mach 0.850 and c_ = 1.0 °
H-CUSP Scheme.
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9a: 12.50% Span.

Cl = 0.2933, Cd = 0.0274.
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9b: 31.25% Span.

Ca = 0.3139, Cd = 0.0159.
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9c: 50.00% Span.

C_ = 0.3262, Cd = 0.0089.
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9d: 68.75% Span.

Ct = 0.3195, Cd = 0.0026.

Figure 9: Onera M6 Wing.

Math 0.840, Angle of Attack 3.06 °, 192x32×48 Mesh.

CL = 0.3041, CD = 0.0131.
H-CUSP scheme.
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